Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Apie
  • Parama
PrisijungimasUžsiregistruokite
EU-Farmbook

global.footer.description

Apie mus

  • Apie "EU-FarmBook
  • Prisidėti
  • Parama
  • Susisiekite su mumis

Sekite mus

  • LinkedIn
  • YouTube
Europos vėliava

Finansuojama Europos Sąjungos

Finansuoja Europos Sąjunga. Tačiau išsakytos nuomonės ir požiūriai yra tik autoriaus (-ių) nuomonė ir nebūtinai atspindi Europos Sąjungos ar Europos Komisijos požiūrį ir nuomonę. Nei Europos Sąjunga, nei Europos Komisija negali būti už jas atsakingos.

© 2025 EU-FarmBook. Visos teisės saugomos.

  • Privatumo politika
  • Atsakomybės apribojimas
  • Slapukai
Europos vėliava
    • Crop farming
    • Environment

    Effect of Hyacinth Treatment by Hydrogen Peroxide Stabilized with Silver and Some Fungicides on the Fungal Infection of Substrate and Bulbs and on Plant Growth and Development

    The aim of the study was to demonstrate the feasibility of using hydrogen peroxide stabilized with silver (H2O2-Ag+) and selected fungicides for the treatment of hyacinth bulbs and to determine their effects on the development of fungi colonizing the substrate and bulbs and their impact on plant growth and development. Hydrogen peroxide stabilized with silver (H2O2-Ag+) and captan, pyraclostrobin + boscalid and methyl thiophanate + tetraconazole were used to treat hyacinth bulbs before planting, in the form of a 20 min soak. The effect of the treatment on the development of fungi on the bulbs and substrate was evaluated during rooting in the refrigerated storerooms and after placement in the greenhouse. Observations were also made on the effect of treatment on hyacinth growth and development. The study showed a significant effect of H2O2-Ag+ and fungicides used for the treatment of hyacinth on reducing the development of fungi on bulbs and substrate during the period of hyacinth rooting. It was found that H2O2-Ag+, at concentrations ranging from 2% to 10%, significantly increased the Chlorophyll Index and Nitrogen Balance Index. In some of the concentrations tested, it also increased petal width, inflorescence width, the number of flowers, leaf length, leaf width, plant quality, fresh weight without inflorescences and the dry weight of plants without inflorescences at some of the concentrations tested. It was shown that, for all fungicides used, flower diameter, inflorescence width, total height, leaf length, leaf width, plant fresh weight without inflorescence and plant dry weight without inflorescence were significantly increased compared to control plants. None of the treatments tested were phytotoxic to hyacinth.

    arba

    Išsamus aprašymas

    1/1

    arba

    Išsami informacija apie įnašą

    Projektas

    EPI Kwiaty Cebulowe

    EPI Kwiaty Cebulowe

    Vieta
    • Poland
    Autoriai
    • Adam T. Wojdyła
    Tikslas
    • Dissemination
    Failo tipas
    Document
    Failo dydis
    1.40 MB
    Sukurta
    19-11-2022
    Kilmės kalba
    English
    Oficiali projekto svetainė
    EPI Kwiaty Cebulowe
    Licencija
    CC BY
    Raktiniai žodžiai
    • fungi on bulb and substrate surface
    • bulb sprouting
    • inhibition
    • fungicides
    • plant growth and development
    • hydrogen peroxide stabilized with silver

    Susijęs turinys

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity