Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Apie
  • Parama
PrisijungimasUžsiregistruokite
EU-Farmbook

global.footer.description

Apie mus

  • Apie "EU-FarmBook
  • Prisidėti
  • Parama
  • Susisiekite su mumis

Sekite mus

  • LinkedIn
  • YouTube
Europos vėliava

Finansuojama Europos Sąjungos

Finansuoja Europos Sąjunga. Tačiau išsakytos nuomonės ir požiūriai yra tik autoriaus (-ių) nuomonė ir nebūtinai atspindi Europos Sąjungos ar Europos Komisijos požiūrį ir nuomonę. Nei Europos Sąjunga, nei Europos Komisija negali būti už jas atsakingos.

© 2025 EU-FarmBook. Visos teisės saugomos.

  • Privatumo politika
  • Atsakomybės apribojimas
  • Slapukai
Europos vėliava
    • Crop farming

    Metschnikowia pulcherrima as a Biocontrol Agent against Potato (Solanum tuberosum ) Pathogens

    An increasing trend in protecting plants against phytopathogens is the replacement of chemical pesticides with environmentally acceptable biopreparations. This article focuses on the possible use of yeast Metschnikowia pulcherrima as a biocontrol agent against potato pathogens. The scope included an assessment of the antimicrobial activity of 10 M. pulcherrima isolates against 10 phytopathogens: Fusarium oxysporum, Fusarium sambucinum, Rhizoctonia solani, Alternaria solani, Alternaria, tenuissima, Alternaria alternata, Colletotrichum coccodes, Phoma exigua, Pectobacterium carotovorum, and Streptomyces scabiei, by the agar-well diffusion method. Pulcherrimin formation, enzymatic profiles detected by the API ZYM system, and metabolite formation evaluated by HPLC analysis were conducted for the most active M. pulcherrima isolates. Leucine arylamidase, valine arylamidase, α- and β-glucosidase, and esterases were the most noteworthy in the pattern of activity. In turn, ethanol, glycerol, and organic acids (acetic, succinic, lactic acids) were determined in the largest quantities. The isolate M. pulcherrima TK1 was selected and cultured on supplemented acid whey. An in situ experiment was carried out on the seed potatoes, which showed a 30%–100% reduction in nine phytopathogens; only P. carotovorum was insensitive to yeast treatment. Therefore, M. pulcherrima TK1 was proposed as the potential biological solution for seed potato protection against phytopathogens.

    arba

    Išsamus aprašymas

    1/1

    arba

    Išsami informacija apie įnašą

    Projektas

    Zdrowy Sadzeniak

    Zdrowy Sadzeniak

    Vieta
    • Poland
    Autoriai
    • Aleksandra Steglińska
    Tikslas
    • Dissemination
    Failo tipas
    Document
    Failo dydis
    2.74 MB
    Sukurta
    18-10-2022
    Kilmės kalba
    English
    Oficiali projekto svetainė
    Zdrowy Sadzeniak
    Licencija
    CC BY
    Raktiniai žodžiai
    • biopesticide
    • enzymatic activity
    • pulcherrimin
    • acid whey
    • antifungal activity

    Susijęs turinys

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity