Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Apie
  • Parama
PrisijungimasUžsiregistruokite
EU-Farmbook

global.footer.description

Apie mus

  • Apie "EU-FarmBook
  • Prisidėti
  • Parama
  • Susisiekite su mumis

Sekite mus

  • LinkedIn
  • YouTube
Europos vėliava

Finansuojama Europos Sąjungos

Finansuoja Europos Sąjunga. Tačiau išsakytos nuomonės ir požiūriai yra tik autoriaus (-ių) nuomonė ir nebūtinai atspindi Europos Sąjungos ar Europos Komisijos požiūrį ir nuomonę. Nei Europos Sąjunga, nei Europos Komisija negali būti už jas atsakingos.

© 2025 EU-FarmBook. Visos teisės saugomos.

  • Privatumo politika
  • Atsakomybės apribojimas
  • Slapukai
Europos vėliava
    • Crop farming

    Fertilisation Carbonée Massive en maraîchage biologique

    Detailed report on trials of adding massive amount of organic material on an organic vegetable production. Main results : Soil fertility management using massive carbon inputs is an effective method for small-scale diversified market gardeners. The costs per hectare can be very high because the quantities used are in the order of several hundred tonnes, but when reduced to the surface area to be fertilised (a few hundred m²), the work is entirely feasible. The‘fertilising’ effect of these massive carbon inputs has been verified, since the indicators of good soil health and fertility are very good (organic matter rate, humus C/N, CEC, etc.). In addition, soil structure is improved, especially as living roots are present in the soil at the time of the massive input. As far as weed control using carbon mulch, such as compost, is concerned, Pierre Xavier has demonstrated theeffectiveness of this technique. The characteristics of certain types of compost mean that they can both feed plants and cover the soil, which limits weed dormancy. His experience has taught him to put in enough compost, more than 5 cm, to ensure that the compost mulch is effective against weeds.

    arba

    Išsamus aprašymas

    1/1

    arba

    Išsami informacija apie įnašą

    Projektas

    FertiBioSol: Biological Fertilization of Soils in Vegetable Crops

    FertiBioSol: Biological Fertilization of Soils in Vegetable Crops

    Vieta
    • France
    Autoriai
    • Morgane Fournier
    Tikslas
    • Dissemination
    Failo tipas
    Document
    Failo dydis
    2.15 MB
    Sukurta
    31-12-2022
    Kilmės kalba
    French
    Oficiali projekto svetainė
    FertiBioSol: Biological Fertilization of Soils in Vegetable Crops
    Licencija
    CC BY
    Raktiniai žodžiai
    • compost
    • organic fertiliser
    • vegetable
    • soil
    • organic matter
    • diseases
    • porosity
    • weed
    • permaculture.

    Susijęs turinys

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity