Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Apie
  • Parama
PrisijungimasUžsiregistruokite
EU-Farmbook

global.footer.description

Apie mus

  • Apie "EU-FarmBook
  • Prisidėti
  • Parama
  • Susisiekite su mumis

Sekite mus

  • LinkedIn
  • YouTube
Europos vėliava

Finansuojama Europos Sąjungos

Finansuoja Europos Sąjunga. Tačiau išsakytos nuomonės ir požiūriai yra tik autoriaus (-ių) nuomonė ir nebūtinai atspindi Europos Sąjungos ar Europos Komisijos požiūrį ir nuomonę. Nei Europos Sąjunga, nei Europos Komisija negali būti už jas atsakingos.

© 2025 EU-FarmBook. Visos teisės saugomos.

  • Privatumo politika
  • Atsakomybės apribojimas
  • Slapukai
Europos vėliava
    • Economics
    • Environment
    • Society

    Analyzing the suitability of LCIA methods to foster the most beneficial food loss and waste prevention action in terms of environmental sustainability

    The food value chain is responsible for significant environmental and resource pressures. 14% of the total food produced in the EU is lost or wasted along the supply chain (FAO, 2019) and 19% is disposed of when reaching the consumption stage (UNEP, 2024). Therefore, to tackle the problem of food loss and waste (FLW), it is crucial to make the agri-food system sustainable. Adopting a life cycle approach to measure and assess the impacts created by FLW prevention actions is key to achieving this transition. This paper provides a detailed mapping study of EU projects that previously dealt with the issue of FLW prevention and compiles the LCIA methods that were used to conduct their environmental ssessments. Two essential requirements are set to evaluate the suitability of the dentified LCIA methods to detect the most beneficial FLW prevention and reduction (FLWPR) action in terms of environmental sustainability. Results show that the Environmental Footprint v3.0 method (EFv3.0) is the LCIA method that better meets these requirements. To shed light on its suitability, this paper uses the EF v3.0 method to make a comparative LCA of two specific hypothetical FLWPR actions concerning the fresh tomato value chain. Moreover, this study highlights the strengths of this LCIA method and explores pathways to overcome possible shortcomings. The outputs of this study represent an academic breakthrough in the field of FLWPR by addressing the requirements for guiding the selection of a method that enhances comparability between FLWPR actions and provides science-based tools that can help decision-makers follow a path to a more sustainable agri-food system.

    arba

    Išsamus aprašymas

    1/1

    arba

    Išsami informacija apie įnašą

    Projektas

    ToNoWaste

    TOWARDS A NEW ZERO FOOD WASTE MINDSET BASED ON HOLISTIC ASSESSMENT

    Vieta
    • Europe
    • Spain
    Autoriai
    • Maria Jesús Muñoz-Torres
    Tikslas
    • Communication
    • Dissemination
    Failo tipas
    Document
    Failo dydis
    2.14 MB
    Sukurta
    01-07-2024
    Kilmės kalba
    English
    Oficiali projekto svetainė
    ToNoWaste
    Licencija
    CC BY-NC-SA
    Raktiniai žodžiai
    • Environmental sustainability
    • food
    • prevention
    • by-product
    • life cycle
    • circular economy
    • food value chain
    • food loss
    • waste prevention
    • LCA
    • LCIA methods

    Susijęs turinys

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity