Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Apie
  • Parama
PrisijungimasUžsiregistruokite
EU-Farmbook

global.footer.description

Apie mus

  • Apie "EU-FarmBook
  • Prisidėti
  • Parama
  • Susisiekite su mumis

Sekite mus

  • LinkedIn
  • YouTube
Europos vėliava

Finansuojama Europos Sąjungos

Finansuoja Europos Sąjunga. Tačiau išsakytos nuomonės ir požiūriai yra tik autoriaus (-ių) nuomonė ir nebūtinai atspindi Europos Sąjungos ar Europos Komisijos požiūrį ir nuomonę. Nei Europos Sąjunga, nei Europos Komisija negali būti už jas atsakingos.

© 2025 EU-FarmBook. Visos teisės saugomos.

  • Privatumo politika
  • Atsakomybės apribojimas
  • Slapukai
Europos vėliava
    • Crop farming

    Factsheet DSS Cabbage moth

    The model for the warning system for cabbage moth is based on the minimum temperature threshold and the requirement for accumulated day-degrees for the different stages of the cabbage moth. The accumulated degree-day model calculates forecasts for development of the cabbage moth through the summer, generates warnings for the time when eggs and small larvae can be registered in the field and the best time for treatment. The model uses soil temperature at a depth of 10 cm as a parameter. This means that it is not related to the presence or absence of cabbage moth in the field. The DSS gives information about the risk of cabbage eggs and small larvae that can be registered in the field and the best time for treatment. Yellow rectangles indicate that oviposition has begun and the farmer should make observations in the field. Red rectangles indicate the optimal time for treatment. Most larvae are small at this point and easily targeted on the outer leaves.Where can DSS be used. The DSS is created by NIBIO which is based in Norway. In order to work with this DSS, soil temperature at a depth of 10 cm should be available in the country of use.

    arba

    Išsamus aprašymas

    1/1

    arba

    Išsami informacija apie įnašą

    Projektas

    IPM Decisions

    Stepping-up IPM decision support for crop protection

    Vieta
    • Europe
    • Norway
    Autoriai
    • L. Langner
    Tikslas
    • Decision-making support
    Failo tipas
    Document
    Failo dydis
    431 kB
    Sukurta
    13-06-2023
    Kilmės kalba
    English
    Oficiali projekto svetainė
    IPM Decisions
    Licencija
    CC BY
    Raktiniai žodžiai
    • DSS
    • cabbage moth
    • decisions support system
    • factsheet

    Susijęs turinys

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity