Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Über EU-FarmBook
  • Support
AnmeldenRegistrieren
EU-Farmbook

EU-FarmBook bietet eine Zusammenstellung bewährter und geprüfter Verfahren für die Land- und Forstwirtschaft. Alle Inhalte der Bibliothek werden von Horizont-Forschungsprojekten bereitgestellt. Erfahren Sie mehr über das Projekt auf unserer Webseite.

Über uns

  • Über EU-FarmBook
  • Beitrag einreichen
  • Support
  • Kontakt

Folgen Sie uns auf

  • LinkedIn
  • YouTube
Europaflagge

Von der Europäischen Union finanziert

Von der Europäischen Union finanziert. Die geäußerten Ansichten und Meinungen entsprechen jedoch ausschließlich denen der Autoren*innen und spiegeln nicht zwingend die der Europäischen Union oder der Europäischen Kommission wider. Weder die Europäische Union noch die Europäische Kommission können dafür verantwortlich gemacht werden.

© 2025 EU-FarmBook. Alle Rechte vorbehalten.

  • Datenschutzbestimmungen
  • Haftungsausschluss
  • Cookies
Europaflagge
    • Environment
    • Society
    • Economics

    GYPWORLD A global initiative to understand gypsum ecosystem ecology

    Gypsum soils occur worldwide and represent natural laboratories of evolution and ecology. The unusual mineral content of gypsum soils is a significant barrier to the growth of most plants, and yet these soils host highly diverse endemic floras that have evolved independently on five continents. Nevertheless, these ecosystems are poorly understood compared to those of other unusual substrates. Little is known about the conservation status of gypsum floras, the potential impact of climate change on them, and their responses to mitigation and restoration. We propose an integrated global study of the ecology and evolution of plant and lichen life on gypsum, including eight gypsum-rich regions from four continents that differ in geological origin, climate, and flora. We will 1) assess the plant and lichen diversity of gypsum; 2) investigate the evolutionary origins and assembly of these floras; 3) evaluate potential adaptive mechanisms on gypsum, the functional structure of gypsum plant and lichen communities, and the processes regulating gypsum ecosystem function; 4) analyse the responses of gypsum communities to global change drivers and explore how gypsum ecosystem restoration/conservation may help mitigate the effects of global change; 5) promote the study of gypsum ecosystems; and 6) communicate the ecological and conservation value of these ecosystems to the public. With the involvement of gypsum experts from 18 academic and non-academic organizations from 11 countries, this project provides an innovative, integrative, and interdisciplinary approach to address key questions in gypsum ecosystem ecology, evolution, and management. The project thus strengthens existing international collaborative networks and consolidates Europe’s leadership in gypsum ecosystem research, including management and conservation plans and the identification of traits for crop improvement on gypsum soils, enhancing its attractiveness as a leading destination for related R&D

    oder

    Detaillierte Beschreibung

    1/1

    oder

    Inhaltsbeschreibung

    Projekt

    GYPWORLD

    A global initiative to understand gypsum ecosystem ecology

    Standort
    • Europe
    Verfasser*innen
    • Juan Francisco Mota Poveda
    Zweck
    • Communication
    • Dissemination
    Dateiformat
    Document
    Dateigröße
    4.15 MB
    Erstellt am
    07-11-2023
    Originalsprache
    English
    Offizielle Projekt-Webseite
    GYPWORLD
    Lizenz
    CC BY
    Schlagworte
    • climate change
    • Restoration
    • gypsum soils

    Ähnliche Inhalte

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity